Cauchy Integral Formula

Ref: Complex Variables by James Ward Brown and Ruel V. Churchil

Dr. A. Lourdusamy M.Sc., M.Phil., B.Ed., Ph.D. Associate Professor Department of Mathematics St.Xavier's College(Autonomous) Palayamkottai-627002.

Theorem (Cauchy Integral Formula)

Let **f** be analytic everywhere inside and on a simple closed contour C, taken in the positive sense. If z_0 is any point interior to C, then

$$f(z_0) = \frac{1}{2\pi i} \int_{C} \frac{f(z)dz}{z - z_0}.$$
 (1)

Remarks

- This formula tells that if a function **f** is analytic within and on a simple closed contour C, then the values of **f** interior to C are completely determined by the values of **f** on C.
- 2. $\int_{C} \frac{f(z)dz}{z z_0} = 2\pi i f(z_0)$ can be used to evaluate certain integrals

along simple closed contours.

Example : Let C be the positively oriented circle |z|=2. Find $\int_{C} \frac{zdz}{(9-z^2)(z+i)}$

Solution :

The function $f(z) = \frac{z}{(9 - z^2)}$ is analytic within and on C.

Since the point $z_0 = -i$ is interior to C, we get

$$\int_{C} \frac{z dz}{(9 - z^2)(z + i)} = \int_{C} \frac{z/(9 - z^2)}{z - (-i)} dz = 2\pi i f(-i) = 2\pi i \left(\frac{-i}{10}\right) = \frac{\pi}{5}$$

Proof of the theorem :

Let c_{ρ} denote **a** positively oriented circle $|z-z_0| = \rho$, where ρ is small enough that c_{ρ} is interior to C.

Note that the function $f(z) / (z - z_o)$ is analytic between and on the contours C and c_{ρ} : Then from the principle of deformation of paths it follows that

$$\int_{C} \frac{f(z)dz}{z - z_0} = \int_{C_{\rho}} \frac{f(z)dz}{z - z_0}$$

Now
$$\int_{C} \frac{f(z)dz}{z - z_0} - f(z_0) \int_{C_{\rho}} \frac{dz}{z - z_0} = \int_{C_{\rho}} \frac{f(z)dz}{z - z_0} - f(z_0) \int_{C_{\rho}} \frac{dz}{z - z_0}$$

$$= \int_{C_{\rho}} \frac{f(z) - f(z_0)}{z - z_0} dz \qquad \dots \dots (3)$$

To Find
$$\int_{C_{\rho}} \frac{dz}{z - z_{0}}$$

 C_{ρ} is $|z - z_{0}| = \rho \implies z - z_{0} = \rho e^{i\theta} \quad (0 \le \theta \le 2\pi)$
So $dz = \rho i e^{i\theta} d\theta$
Now $\int_{C_{\rho}} \frac{dz}{z - z_{0}} = \int_{0}^{2\pi} \frac{\rho i e^{i\theta} d\theta}{\rho e^{i\theta}} = 2\pi i$

So (3) becomes

$$\int_{C} \frac{f(z)dz}{z - z_{0}} - 2\pi i f(z_{0}) = \int_{C_{\rho}} \frac{f(z) - f(z_{0})}{z - z_{0}} dz \qquad \dots \dots (4)$$

6

Now **f** is analytic at $z_0 \Rightarrow f$ is continuous at z_0 . So for each $\in >0$, however small, $\exists \delta > 0$ such that $|f(z)-f(z_0)| < \epsilon$ whenever $|z - z_0| < \delta$ (5) Let $\rho < \delta$, $\Rightarrow |z - z_0| = \rho < \delta \Rightarrow |f(z) - f(z_0)| < \epsilon$ We know $\left| \int_{C_0} \frac{f(z) - f(z_0)}{z - z_0} dz \right| \le ML$

So
$$\left| \int_{C_{\rho}} \frac{f(z) - f(z_{0})}{z - z_{0}} dz \right| < \frac{\epsilon}{\rho} 2\pi\rho = 2\pi\epsilon$$
$$\Rightarrow \left| \int_{C} \frac{f(z)dz}{z - z_{0}} - 2\pi i f(z_{0}) \right| < 2\pi\epsilon \qquad [by (4)]$$

Since this is true for every $\epsilon > 0$, this is also true for every

 $2\pi \in >0$.

$$\Rightarrow \int_{C} \frac{f(z)dz}{z - z_0} = 2\pi i f(z_0) . \quad \blacksquare$$