Cauchy Integral Formula

Ref: Complex Variables by James Ward Brown and Ruel V. Churchil

Dr. A. Lourdusamy M.Sc.,M.Phil.,B.Ed.,Ph.D.
Associate Professor
Department of Mathematics
St.Xavier's College(Autonomous)
Palayamkottai-627002.

Theorem (Cauchy Integral Formula)

Let \mathbf{f} be analytic everywhere inside and on a simple closed contour C, taken in the positive sense. If z_{0} is any point interior to C , then

$$
\begin{equation*}
\mathrm{f}\left(\mathrm{z}_{0}\right)=\frac{1}{2 \pi i} \mathrm{f} \frac{\mathrm{f}(\mathrm{z}) \mathrm{dz}}{\mathrm{z}-\mathrm{z}_{0}} . \tag{1}
\end{equation*}
$$

Remarks

1. This formula tells that if a function \mathbf{f} is analytic within and on a simple closed contour C, then the values of f interior to C are completely determined by the values of \mathbf{f} on C .
2. $\int_{\mathrm{c} z}^{\mathrm{f}(\mathrm{z}) \mathrm{dz}}=2 \pi i f\left(\mathrm{z}_{0}\right)$ can be used to evaluate certain integrals along simple closed contours.

Example: Let C be the positively oriented circle $|\mathrm{Z}|=2$.
Find $\int_{\mathrm{c}} \frac{\mathrm{zdz}}{\left(9-\mathrm{z}^{2}\right)(\mathrm{z}+i)}$

Solution :

The function $f(z)=\frac{z}{\left(9-z^{2}\right)}$ is analytic within and on C.
Since the point $\mathrm{z}_{0}=-i$ is interior to C , we get

$$
\int_{\mathrm{c}} \frac{\mathrm{zdz}}{\left(9-\mathrm{z}^{2}\right)(\mathrm{z}+i)}=\int_{\mathrm{c}} \frac{\mathrm{z} /\left(9-\mathrm{z}^{2}\right)}{\mathrm{z}-(-i)} \mathrm{dz}=2 \pi i \mathrm{f}(-i) \quad=2 \pi i\left(\frac{-i}{10}\right)=\frac{\pi}{5}
$$

Proof of the theorem :

Let C_{ρ} denote a positively oriented circle $\left|z-z_{0}\right|=\rho$, where ρ is small enough that C_{p} is interior to C .

FIGURE

Note that the function $f(z) /\left(z-z_{0}\right)$ is analytic between and on the contours C and C_{ρ} : Then from the principle of deformation of paths it follows that

$$
\int_{\mathrm{C}} \frac{\mathrm{f}(\mathrm{z}) \mathrm{dz}}{\mathrm{z}-\mathrm{Z}_{0}}=\int_{\mathrm{C}_{\rho}} \frac{\mathrm{f}(\mathrm{z}) \mathrm{dz}}{\mathrm{z}-\mathrm{Z}_{0}}
$$

Now $\int_{C} \frac{f(z) d z}{z-z_{0}}-f\left(z_{0}\right) \int_{C_{\rho}} \frac{d z}{z-z_{0}}=\int_{\mathcal{C}_{\rho}} \frac{f(z) d z}{z-z_{0}}-f\left(z_{0}\right) \int_{C_{\rho}} \frac{d z}{z-z_{0}}$

$$
\begin{equation*}
=\int_{C_{p}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z \tag{3}
\end{equation*}
$$

To Find $\int_{c_{p}} \frac{d z}{z-z_{0}}$
C_{ρ} is $\left|\mathrm{z}-\mathrm{z}_{\mathrm{o}}\right|=\rho \quad \Rightarrow \mathrm{z}-\mathrm{z}_{\mathrm{o}}=\rho \mathrm{e}^{i \theta} \quad(0 \leq \theta \leq 2 \pi)$

$$
\text { So } \quad \mathrm{dz}=\rho i e^{i \theta} \mathrm{~d} \theta
$$

Now

$$
\int_{c_{\rho}} \frac{\mathrm{dz}}{\mathrm{z}-\mathrm{z}_{0}}=\int_{0}^{2 \pi} \frac{\rho i \mathrm{e}^{i \theta} \mathrm{~d} \theta}{\rho \mathrm{e}^{i \theta}}=2 \pi i
$$

So (3) becomes

$$
\begin{equation*}
\int_{\mathrm{C}} \frac{\mathrm{f}(\mathrm{z}) \mathrm{dz}}{\mathrm{z}-\mathrm{z}_{0}}-2 \pi i \mathrm{f}\left(\mathrm{z}_{0}\right)=\int_{\mathrm{C}_{\rho}} \frac{\mathrm{f}(\mathrm{z})-\mathrm{f}\left(\mathrm{z}_{0}\right)}{\mathrm{z}-\mathrm{z}_{0}} \mathrm{dz} \tag{4}
\end{equation*}
$$

Now \mathbf{f} is analytic at $z_{0} \Rightarrow f$ is continuous at z_{0}.
So for each $\epsilon>0$, however small, $\exists \delta>0$ such that
$\left|\mathrm{f}(\mathrm{z})-\mathrm{f}\left(\mathrm{z}_{0}\right)\right|<\in$ whenever $\left|\mathrm{z}-\mathrm{z}_{0}\right|<\delta \quad \ldots \ldots .$. (5)
Let $\rho<\delta, \Rightarrow\left|z-\mathrm{z}_{0}\right|=\rho<\delta \Rightarrow\left|\mathrm{f}(\mathrm{z})-\mathrm{f}\left(\mathrm{z}_{0}\right)\right|<\epsilon$
We know $\left|\int_{\varphi_{\rho}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z\right| \leq M L$

So $\quad\left|\int_{C_{\rho}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z\right|<\frac{\in}{\rho} 2 \pi \rho=2 \pi \in$

$$
\Rightarrow\left|\int_{\mathrm{c}} \frac{\mathrm{f}(\mathrm{z}) \mathrm{dz}}{\mathrm{z}-\mathrm{z}_{0}}-2 \pi i \mathrm{f}\left(\mathrm{z}_{0}\right)\right|<2 \pi \in \quad[\mathrm{by} \text { (4) }]
$$

Since this is true for every $\epsilon>0$, this is also true for every $2 \pi \in>0$.

$$
\Rightarrow \int_{\mathrm{C}} \frac{\mathrm{f}(\mathrm{z}) \mathrm{dz}}{\mathrm{z}-\mathrm{z}_{0}}=2 \pi i \mathrm{f}\left(\mathrm{z}_{0}\right) .
$$

